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A New Algorithm for the Design of Linear Prediction
Error Filters Using Cumulant-Based MSE Criteria

Chong-Yung Chi, Wen-Jie Chang, and Chih-Chun Feng

Abstract—This correspondence proposes a new algorithm for the design
of (minimmum-phase) linear prediction error (LPE) filters using two new
cumulant (higher order statistics) based MSE criteria when the given
stationary random signal x(n) is nonGaussian and contaminated by
Gaussian noise. It is shown that the designed LPE filters based on the
proposed criteria are identical to the conventional correlation (second-
order statistics) based LPE filter as if 2(n) were noise-free measurements.
As correlation-based LPE filters, coefficients of the designed cumulant-
based LPE filters can be obtained by solving a set of symmetric Toeplitz
linear equations using the well-known computationally efficient Levin-
son—Durbin recursion. Moreover, the proposed two criteria are applicable
for any cumulant order M > 3, and one of the proposed criteria for
M = 3 reduces to Delopoulos and Gi kis’ third-order cumulant-
based MSE criterion. Some simulation results are then provided to
support the analytical results.

I. INTRODUCTION

Linear prediction error (LPE) filters [1], [2] have been widely
used in various signal processing areas such as speech processing,
seismic deconvolution, and spectral estimation. The conventional
LPE filter is based on the mean-square-error (MSE) criterion, and its
coefficients can be obtained by solving a set of symmetric Toeplitz
linear equations (the well-known Yule-Walker equations) formed of
correlations 7. (k) of the stationary signal (1) of interest. However,
correlation-based LPE filters are sensitive to measurement noise
simply because r..(k) includes correlations of noise.

Delopoulos and Giannakis [3] proposed a third-order cumulant-
based MSE criterion and a fourth-order cumulant-based MSE crite-
rion. It was shown in [3] that when the nonGaussian signal z(n)
is contaminated by Gaussian noise, their criteria are equivalent to
the correlation-based MSE criterion as if z(n) were a noise-free
signal. Surely, these two criteria can be used to design LPE filters;
moreover, the filter coefficients can be obtained by solving a set of
linear equations when their third-order cumulant-based MSE criterion
is used. Chi et al. [4]-[6] also proposed some cumulant-based criteria
for the design of LPE filters when x(n) is nonGaussian. Again,
these cumulant-based criteria are also equivalent to the correlation-
based MSE criterion as if z(n) were a noise-free signal, but the
filter coefficients can only be obtained using nonlinear optimization
algorithms due to lack of closed-form solutions. This correspondence
further proposes a new algorithm for the design of LPE filters using
two new cumulant-based MSE criteria, and the filter coefficients can
be obtained by solving a set of symmetric Toeplitz linear equations to
which the Levinson—Durbin recursion can be applied. The proposed
two criteria are applicable for any cumulant order M > 3. Moreover,
one of the proposed two criteria for M = 3 reduces to Delopoulos
and Giannakis’ third-order cumulant-based MSE criterion mentioned
above.
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In Section II, some modeling assumptions followed by a brief
review of conventional correlation-based LPE filters are presented.
Section III presents the two new cumulant-based MSE criteria for
the design of LPE filters together with some analytical results. Then,
some simulation results are provided to support the proposed criteria
in Section 1V. Finally, we draw some conclusions.

II. MODELING ASSUMPTIONS AND CONVENTIONAL LPE FILTERS

Assume that 2(n).n =0,1.....] N —1 are the given nonGaussian
noisy measurements generated from the following convolutional
model:

.l',(ﬁ) = u(n)* h(n) 4+ w(n) 1)

where h(n) is a linear time-invariant (LTI) system, u(n) is the driving
input to the system, and w(n) is measurement noise. Let us make
the following assumptions for the model given by (1):
A1) The system h(n) is causal and stable; it can be minimum
phase or nonminimum phase.
A2) The input u(n) is real, zero-mean, stationary, i.i.d., nonGaus-
sian with variance ¢2 and Mth-order (M > 3) cumulant
VM-
A3) Measurement noise w(n) is Gaussian, which can be white or
colored with unknown statistics.
A4) The input u(n) is statistically independent of w(n).
Let vp(n) be a pth-order causal FIR filter with v,(0) = 1 driven
by x(n). Then, the output e(n) (prediction error of z(n)) of the
filter is given by

P
e(n) = z(n) *x vp(n) = x(n) + Z vp(i)a(n — ). )
=1

The conventional pth-order LPE filter is the v, (n) such that the mean
square error Ele?(n)] is minimum. The resulting LPE filter is known
to be a minimum-phase whitening filter, but it tries to whiten the noisy
signal x(n) instead of the noise-free signal y(n) = u(n) * h(n).

III. NEw CUMULANT-BASED MSE
CRITERIA FOR THE DESIGN OF LPE FILTERS

The prediction error given by (2) can be further expressed as
e(n) = &(n) + w'(n) 3)

where w'(n) = w(n) * vpy(n) is also a Gaussian noise sequence
since w(n) is Gaussian, and

&(n) = u(n) * g(n) “
is the noise-free output of the LPE filter where
g(n) = h(n) x vp(n). (&)

Moreover, it can be shown that the M th-order cumulant function,
which is denoted C'az (k1. k2...., kas—1), of x(n) is given by [7],
(8]

Chrp(kikaoo o kar—1)

= 3. h(h(n+k)-h(n+ ki) ©®)

n=—ox
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which also implies that

Care (ki ko, .o kar—1)

= Cumelki koo ka—1)
=y Y. g(n)gn+k)-gln+hyr). (D)

The new cumulant-based MSE criteria for the design of LPE filters
are described in the following theorem:

Theorem 1: Let U,(n) be the optimum v, (
the following two criteria:

1
= 1)pPM=2)

n) based on either of

Tu(vp(n)) = TAE

o
ds .5
kg==—oc ka 1=

Mx

2
Core(ks =0, ko, kM—1)} > jM(ﬁp(n))

()]
Jar(vp(n)) ={ > Cum™(e(n), e(n),
e 2
x(n —k),. .rn—k))}

2 Jar(Vp(n)) )

where M > 3, and V,(z) is the Z transform of vp(n). Then,

the 7, (n) associated with Js and the one associated with Jas are
identical to the conventional pth-order LPE filter associated with the
case of SNR = oo, as long as vym F1 # 0 for the former, and
var Far—2 # 0 for the latter, where

Z R™(n).

n=—oc

(10

Proof: Tt is sufficient to prove that minimizing Jar and Jas is
equivalent to minimizing E[¢%(n)], which is equal to EN[eQ(n)] when
SNR = oc (see (3)). Let us simplify the numerator of Jy as follows:

IS

Care (0,2, kar—1)

kog=—oc kpy_1=—o%
o o f
= Y > > Fgn+ k)
ko=—= kpy_1=—oc0n=—oc

x g(n+kar-1) (since (7))

- - M—2
:“r':\l{ Z 92(")}{ Z !1(")}

n=—oc

- A CICE NACESY (1n
Substituting (11) into Jur given by (8) yields
- \IF» -272
In = [——Ej—} {E¢? n)]} (12)

On the other hand, Jas can be simplified as follows:
Jar 2{ z Cum®™ (e(n).e(n),
k=—o0

2
z(n—k).....z(n - k))}
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2
= |TM Z z n)hw 2 —k)jl
k=—oc n=—occ

(since (A3), (Ad), (6) and (7))

r =) 212 o 2
= X h“”(n)} [ai > g%n)}
= L“U&?} {E[&(n)]}" = p2(M) (13)

where
_ '}:\/IF:\'I—2 2
pp(M) = [T] E[¢"(n)]. (14)

One can see, from (12) and (13) that minimizing either Jar or Jag is
equivalent to minimizing E[¢”(n)] when vy Fi # 0 for the former
and yar Far—2 # 0 for the latter Q.E.D.

Note that Jas = Jar = C2..(0) = {E[e*(n)]}* for M = 2, which
indicates that conceptually, the proposed two criteria J3 and Jar can
be viewed as a square of the sum of all higher order joint correlatlons
of e2(n) and {e(n + k2)...., ,e(n + kar—1)} and that of e %(n) and
(M - 2) identical random variables »(n — k), respectively. Note,
from (9), that the proposed criterion Jis for M = 3 and M = 4

can be expressed as
2
(n)x(n — k)]} ,

= { Z Ele?
k=—oc
which is equivalent to the square of Delopoulos and Giannakis® [3]
third-order cumulant-based MSE criterion, and
Z E[EY(VI,)xz(il — k)] = 2(E[e(n)x(n — E))?

Jy = {
k=—oc

~ E[e*(n)]E[2"(n — kn}

(15)

(16)

respectively. Delopoulos and Giannakis [3] also proposed a fourth-
order cumulant-based MSE criterion, which is given as follows:

](:)4%' Z Z el wolk1—k2)
ki=—oc ka=—oc
{Ele(n + ki)a(n + k2) - € (n)]
—2E[z(n + k1 )e(n)] - E[x(n + k2)e(n)]

—E[z(n + k)z(n + k2)] - E[e*(n)]}. an

From (16) and (17), one can see that if the crltenon J]gG given by
(17) is modified by letting k1 = ko, then Jy = { }2 In addition,
note that J3 and Jy4 are always concave functions of vp(n), whereas
J(J) and JH) can be convex functions of v,(n), and that J4 uses
only a “1- d1mensiona1 slice” of fourth-order cross cumulants, whereas
J(“g uses a “2-dimensional slice” of fourth-order cross cumulants.
Moreover, the proposed criterion Js always requires a 1-dimensional
slice of Mth-order cumulants, and the designed LPE filter can be
obtained by solving a set of linear symmetric Toeplitz equations given
by (20) below for all M > 3. Therefore, the proposed criterion Jar is
computationally much more practical than Delopoulos and Giannakis’
criterion for 3 > 4. On the other hand, Theorem 1 also implies the
following fact:

F1) Assume that H(z) and Hyp(z) are spectrally equivalent, and
Hyp(z) is minimum phase with Hyp(z = oc) = L. Then,
the optimum 9,(n) (associated with either Jas or Jar) —
¥,'(n) as p — oo where 3,(n) is the impulse response of
the inverse filter 1/Hxp(2).
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TABLE 1
SIMULATION RESULTS OF EXAMPLE I
a(l) = 0.7, a(2) = 0.1, N = 4096, 30 independent runs
Criterion Estimated values (mean+tstandard deviation)
SNR = SNR =40 SNR=10 SNR =5
MSE o(1) { 0.7023 +0.0168 0.6713 £ 0.0173 0.5975 £ 0.0178 0.5262 £+ 0.0179
9(2) | 0.1009 £ 0.0164 0.0793 £ 0.0171 0.0312 +0.0178 | —0.0093 £ 0.0181
Js(j3) 9(1) | 0.7031 £ 0.0507 0.7049 £ 0.0615 0.7046 + 0.0886 0.7056 £ 0.1370
9(2) | 0.1003 £ 0.0392 0.0976 + 0.0494 0.0937 £ 0.0714 0.0923 £ 0.1112
JA(j4) o(1) | 0.6926 £ 0.0438 0.6874 + 0.0452 0.6812 + 0.0513 0.6760 + 0.0602
9(2) | 0.0952 + 0.0560 0.0904 £ 0.0551 0.0859 £ 0.0559 0.0857 £ 0.0594

Because the optimum LPE filters associated with J~M and Jys are
identical, let us only present the way to obtain the optimum LPE filter
based on the proposed criterion Jys given by (9). The criterion Jas
can be further simplified by substituting (2) into (9) as follows:

Jar = {pp(M)}?

p 2
= {Zva<i)vp(j)c<j —z’)} (since (13))  (18)

i=0 ;=0

where

> Crre(0 0k, k4 0) = (=), (19)
Setting the partial derivative of Jas given by (18) with respect to
vp(i), ¢ = 1,2,...,p equal to zero, one can obtain a set of linear
equations given as follows:

Cp+10p = 9 (20)

where ¥, = [1,7,(1),....3(p)]” and 6 = {p,(M),0,...,0]" are
(p+1) x1 vectors, and Cpi1 is a (p+ 1) X (p + 1) symmetric
Toeplitz matrix with the (i, j)th component given by

[Cotiliy=cli=j) 1<i<@+1. 1<i<p+D. @D

Therefore, ¥, can be solved using the computationally efficient
Levinson—Durbin recursion [1], [2]. Furthermore, taking the Fourier
transform of c(7) given by (19), one can easily show that

Cl)y= 3 eli)e™ = qaFaral H(e™)[*

1=—00

(22)

which implies the following fact:
F2) The sequence c(i) = c(—1) is positive definite if yar Far—2 >
0 and negative definite if yar Fas—2 < 0. Therefore, c(i)
can be thought of as a legitimate correlation sequence if
v Far—2 > 0 and that the desired v, (n) obtained by solving
(20) is minimum phase [1], [2].
Moreover, c(i) must be estimated from data in practice. For
instance, c(i) can be estimated as

K
fiy=Y Crul0,..., 0,k k +i) (23)

k=—K

where Caro(ki,ko.... . ka—1) is the biased sample cumulant of
x(n), and the integer ' must be chosen large enough such that
(i) is approximate t0 Y o Car.2(0,...,0,k, k + i). Note that
GM.I(O, ...,0,k, k+1)is known to be a consistent estimate [8] for
Coar(0y o, 0,k k47) = v 3, AWM 2h(n+ k)R(n+ k+1),
which is nonzero for —L < k < L — i (assuming { > 0), where L is
the length of h(n). Therefore, ¢(¢) is also a consistent estimate for
e(i) for K > L — 1.

—o0

IV. SIMULATION RESULTS

In this section, two simulation examples are to be presented to
demonstrate that the proposed criteria can be used for the design
of LPE filters. In these examples, H(z) was a second-order AR
model; the order of the LPE filter to be designed was p = 2, and
filter coefficients were obtained by solving (20) in which c(7) was
replaced by (i) given by (23) with a proper value for parameter A’;
thirty independent runs for data length N = 4096 were performed
to calculate statistical mean and standard deviation. For comparison,
conventional LPE filters were also obtained using the well-known
Burg’s algorithm [1], [2].

Example 1: The driving input u(n) used was a zero-mean, expo-
nentially distributed i.i.d. random sequence with variance o =1,
43 = 2, and v4 = 6. A second-order autoregressive (AR) model
H(z) = 1/A(z), where

Az)=14a()z +a(2)z2=1407z""+0177 (24

was used, and w(n) was white Gaussian. The desired LPE filters
associated with both Ja(jg) and J4(J4) were obtained with i’ =5
and K = 10 (see (23)), respectively.

The simulation results for SNR = 5, 10, 40, and oo are shown in
Table 1. Observe, from this table, that when SNR is large (SNR = o0),
mean values of all estimated filter coefficients are very close to the
true AR parameters. When SNR is low (SNR=5), biases of estimated
filter coefficients associated with the proposed cumulant-based MSE
criteria are much smaller than those associated with the conventional
MSE criterion, and mean square errors (sum of variance and square
of bias) of estimated filter coefficients shown in the former are also
smaller than those shown in the latter, although standard deviations
of estimated filter coefficients for the latter are smaller than those
for the former.

Example 2: The driving input used in this example was the same
as that used in Example 1, and the system h(n) was also a second-
order AR model with H(z) = 1/A(z), where

A(z)=1— "' 4034272 25)

However, both the case of white Gaussian noise and the case of
colored Gaussian noise were considered in the simulation. Colored
Gaussian noise sequences were generated from a causal high-pass
FIR filter with transfer function B(z) = 1 — 1.2:7! 4+ 0.32272,
where the input is a white Gaussian noise sequence. The criterion
Js(J3) was used with parameter A set to 4 (see (23)) in solving the
filter coefficients.

Instead of showing numerical results with a table as in Example 1,
we present the simulation results for SNR = 5 via AR power spectral
density (PSD) 1/ [V, (e727/)|2. The simulation results for the case
of white Gaussian noise are shown in Fig. 1. Thirty PSD estimates
associated with J3 (J~3 ) and those obtained using Burg’s algorithm are
shown in Fig. 1(a) and (b), respectively, in which different kinds of
lines were used to make each single PSD estimate discernible from
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Fig. 1. Simulation results for the case of white Gaussian noise with SNR = 5: (a) Thirty PSD estimates obtained by the proposed criterion .]3(j3); (b)
those obtained by Burg’s algorithm; (c) averages depicted by dashed line and dashed-dotted line as well as + standard deviation (dotted line) of the 30
estimates shown in (a) and (b), respectively, together with the true PSD (solid line).

other PSD estimates. One can see, from these two figures, that the
variance of the AR spectral estimator associated with J3 (J~3) is larger
than that associated with Burg’s algorithm. On the other hand, the re-
spective averages of the 30 PSD estimates shown in Fig. 1(a) and (b)
together with the true PSD (solid line) are shown in Fig. 1(c). Note,
from this figure that the average (dashed line) of the 30 PSD estimates
associated with Jg(fg) is quite close to the true PSD (within 0.2 dB),
but that (dashed-dotted line) associated with Burg’s algorithm departs
from the true power spectrum by about 2 dB. In other words, the bias
of the AR spectral estimator associated with J3(J3) is much smaller
than that associated with Burg’s spectral estimator. The reason for this
is simply because noise power spectrum is significant to correlation-
based power spectral estimators for this case (SNR = 3).

The simulation results for the case of colored Gaussian noise
corresponding to those shown in Fig. 1(a) through (c) are shown in
Fig. 2(a) through (c), respectively. The same conclusion can be drawn
from Fig. 2 as drawn from Fig. 1. Additionally, the average (dashed-
dotted line) associated with Burg’s algorithm shown in Fig. 2(c)
departs from the true PSD by about 2 dB in the low-frequency region
and more than 5 dB in the high-frequency region. Again, the reason
for this is simply because noise PSD is highpass and significant to
correlation-based power spectral estimators for this case (SNR = 5).

This also indicates that correlation-based power spectral estimators
are more sensitive to colored noise than to white noise. On the other
hand, the AR spectral estimator associated with the proposed criteria
is always unbiased no matter whether Gaussian noise is white or
colored, but its variance is larger for colored noise than for white
noise (see the dotted lines (average + standard deviation) shown in
Figs. 1(c) and 2(c)).

When the value of I is too small to include all nonzero terms
Care(0,...,0,k.k + i) in c(i), the designed LPE filters and the
associated AR spectral estimators are no longer unbiased, but their
variance is also smaller for finite measurements. On the other
hand, for the case that x(n) is a narrow-band nonGaussian signal
(corresponding to a large L (length of 2(n))), K" must be chosen large
enough for &(7) to be unbiased, but the variance of () may become
quite large in the meantime, which can result in very inaccurate LPE
filter coefficients and the associated PSD estimates.

V. CONCLUSION

We have presented a new algorithm using two new cumulant-
based MSE criteria Js and Jar given by (8) and (9), respectively,
for the design of LPE filters. Delopoulos and Giannakis’ third-order
cumulant-based MSE criterion [3] is a special case of the proposed
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Fig. 2. Simulation results for the case of colored Gaussian noise with SNR = 5: (a) Thirty PSD estimates obtained by the proposed criterion »/'3(J~3);
(b) those obtained by Burg’s algorithm; (c) averages depicted by dashed line and dashed-dotted line as well as & standard deviation (dotted line) of the
30 estimates shown in (a) and (b), respectively, together with the true PSD (solid line).

criterion for M = 3. The designed cumulant-based LPE filters with
measurements corrupted by additive Gaussian noise are identical,
and they are identical to the conventional (minimum-phase) LPE
filter associated with the case that measurements are noise free
(i.e., SNR = o) (see Theorem 1). When noise is nonGaussian,
the designed LPE filter using M th-order cumulants of measurements
will no longer be noise insensitive if M th-order cumulants of noise
are significant compared with those of noise-free measurements.
Moreover, coefficients of the designed cumulant-based LPE filters can
be obtained by solving a set of symmetric Toeplitz linear equations to
which the computationally efficient Levinson—Durbin recursion can
be applied. Finally, some simulation results were presented to justify
that the proposed cumulant-based MSE criteria can be used for the
design of LPE filters.

We also found, from the performed simulation, that the power
spectral estimator associated with the proposed criteria is unbiased
and insensitive to both white and colored Gaussian noise, but its
variance is larger than Burg’s power spectral estimator, which has
a bias crucially determined by noise power spectrum and SNR.
However, for the case that 2(n) is a narrow-band nonGaussian linear
process, when L is large, the variance of ¢(¢) becomes quite large
for finite measurements, which leads to large variance of the power

spectral estimator associated with the proposed criteria. We leave the
problem as a future research topic.
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